
Data Stores
Abel Sanchez, John R. Williams

Data
Fundamental components of computer programs:

● A way to represent data
● A way to store data
● Instructions to manipulate data

Data Store

Stores and manipulates information

Two Broad Types of Data Stores
● Relational: the classic - the old - represents all data as tables
● NoSQL: alternatives to traditional database

○ We will see examples of document databases
■ Data is defined in terms of documents - JSON objects

Database Design
Database design involves choosing:

● The documents collections (tables)
● The fields/properties (the columns)
● How collections and properties interact

Relational

Entity-Relationship Modeling
E/R Modeling is used for conceptual design

● Entities - object or things of interest
● Attributes - facts of properties of an entity
● Relationships - links between entities

Entities
Represent objects or things of interest

● Physical things like students, professors, employees
● Abstractions like courses, programs, projects, orders
● Have types like course, professor
● Have instances like courses: calculus, algebra

Entities in Diagrams
Entities are drawn as a box

Attributes
Attributes are facts, properties, or details of an entity.

● Students have IDs, names, courses
● Courses have names, credits, level

Attributes in Diagrams
Represented a few different ways

Relationships
Relationships are an association between two or more entities.

● A student takes several courses
● A course is taught by one professor

Cardinality Ratios
An entity can participate in three types of relationships.

● One to one (1:1). Each professor has one office
● One to many (1:N). A professor can advice many students
● Many to many (N:N). Each student takes many classes, and each class is

taken my many students.

Relationships & Cardinality Ratios
Relationships are links between two entities

Entity-Relationship Modeling
Look at your data and identify

● Entities
● Attributes
● Relationships
● Cardinality ratios

Examples - University
A university consists of a number of departments. Each department offers several
programs. A number of courses make up each program. Students enroll in a
particular program and take courses towards the completion of that program. Each
course is taught by a professor from the appropriate department, and each
professor advices a group of students.

Example - University entities
A university consists of a number of departments. Each department offers several
programs. A number of courses make up each program. Students enroll in a
particular program and take courses towards the completion of that program. Each
course is taught by a professor from the appropriate department, and each
professor advices a group of students.

Example - ER Diagram
Entities: department, program, course, professor, student

Sample:
Media ER

Document Data Stores

Document data stores
● Documents are independent units
● Application logic is easier to write
● Unstructured data can be stored easily

Document

Mongo - Add document to table
var db = client.db("test");
var collection = db.collection('documents');

var document = {
 name :'peter',
 email:'peter@mit.du',
 age :'18'
};

// add document to database
collection.insertOne(document, function(err, res) {
 if (err) throw err;
 console.log("1 document inserted");
});

Collection
Multiple documents make a collection

Create collection

// get handle on database
var db = client.db("test");

// create documents table
var collection = db.collection('documents');

Read collection

var db = client.db("test");
var collection = db.collection('documents');

// read database collection
collection.find({}).toArray(function(err, docs) {
 console.log("Found the following records");
 console.log(docs)
});

Console

Where is your data? In the browser? In the file system?

Browser

Where is your data?

Browser Laptop Cloud

var express = require('express');

var app = express();

var store = [];

app.get('/add/:first/:last' , function(req,res){

 var first = req.params.first;

 var last = req.params.last;

 var item = {first,last};

 store.push(item);

 res.send(item);

});

Store data in memory

FAKER

Generate massive fake data
var faker = require('faker');

// generate name

var randomName = faker.name.findName();

// generate email

var randomEmail = faker.internet.email();

// generate credit card

var randomCard = faker.helpers.createCard();

app.get('/add/:length', function(req,res){

 var length = req.params.length;

 for (var i = 0; i < length; i++) {

 var first = faker.name.firstName();

 var last = faker.name.lastName();

 store.push({first,last});

 }

 res.send('added ' + length + ' users');

});

Store fake data

lowdb - a little database
var low = require('lowdb')

var FileSync = require('lowdb/adapters/FileSync')

var adapter = new FileSync('db.json')

var db = low(adapter)

db.get('posts')

 .push({ id: 1, title: 'lowdb is awesome'})

 .write()

Store bus locations
locations.forEach(function(bus){

 var id = bus.id;

 var label = bus.attributes.label

 var direction_id = bus.attributes.direction_id

 var latitude = bus.attributes.latitude

 var longitude = bus.attributes.longitude

 db.get('vehicles')

 .push({id,label,direction_id,latitude,longitude})

 .write()

});

Unique bus ids
var vehicles = db.get('vehicles').value()

var result = new Set(vehicles.map(vehicle => vehicle.id));

console.log(result);

console.log(Array.from(result));

Browser and Console

Data Model
● Structured:

○ Tables with predefined fields
○ Example: Browser IndexedDB

● Key/Value:
○ Key/Value stores, and NoSQL DBs
○ Example: Browser Cache API and Apache Cassandra

● Byte Streams:
○ Opaque string of bytes
○ Example: file systems and cloud storage services

Persistence
● Session persistence:

○ Lives as long as web session - until you close the tab
○ Example: Session Storage API

● Device persistence:
○ Persists across sessions - data is there next time you open browser
○ Example: Cache API

● Global persistence:
○ Persists across sessions & devices - data is there across devices
○ Example: AWS cloud storage

Write/Block
● Transactions:

○ Example: Atomicity, Consistency, Isolation, Durability - ACID

● Sync/Async:
○ Example: Blocking or parallel

API Data Model Persistence Browser Support Transactions Sync/Async

File system Byte stream device 52% No Async

Local Storage key/value device 93% No Sync

Session Storage key/value session 93% No Sync

Cookies structured device 100% No Sync

WebSQL structured device 77% Yes Async

Cache key/value device 60% No Async

IndexedDB hybrid device 83% Yes Async

cloud storage byte stream global 100% No Both

Comparison - Browser APIs

https://developer.mozilla.org/en-US/docs/Web/API/FileSystem
http://caniuse.com/#feat=filesystem
https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage
http://caniuse.com/#feat=namevalue-storage
https://developer.mozilla.org/en-US/docs/Web/API/Window/sessionStorage
http://caniuse.com/#feat=namevalue-storage
https://developer.mozilla.org/en-US/docs/Web/HTTP/Cookies
https://www.w3.org/TR/webdatabase/
http://caniuse.com/#feat=sql-storage
https://developer.mozilla.org/en-US/docs/Web/API/CacheStorage
http://caniuse.com/#feat=serviceworkers
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API
http://caniuse.com/#feat=indexeddb
https://cloud.google.com/storage/

Recommendations
● Offline storage: Cache API

● Offline storage: IndexedDB - broader browser support

● Global byte stream storage: Cloud Storage service.

Popular databases for Node JS
● MongoDB

○ https://www.mongodb.com/
● CouchDB

○ https://couchdb.apache.org/
● Redis

○ https://redis.io/

● Others
○ Cassandra
○ Couchbase
○ CouchDB
○ LevelDB
○ MySQL
○ MongoDB
○ Neo4j
○ Oracle
○ PostgreSQL
○ Redis
○ SQL Server
○ SQLite
○ ElasticSearch

* https://expressjs.com/en/guide/database-integration.html

https://www.mongodb.com/
https://couchdb.apache.org/
https://redis.io/

Cloud

Sample free service - 512 MB

Setup Steps
● Build cluster
● Create user
● Whitelist your IP
● Connect to cluster

var MongoClient = require('mongodb').MongoClient;
var uri = "mongodb+srv://<UserName>:<Password>@cluster0-pbjpc.mongodb.net/test?retryWrites=true";
var client = new MongoClient(uri, { useNewUrlParser: true });

client.connect(err => {
 var db = client.db("test");
 var collection = db.collection('documents');
 var document = {
 name :'peter',
 email:'peter@mit.du',
 age :'18'
 };
 collection.insertOne(document, function(err, res) {
 if (err) throw err;
 console.log("1 document inserted");
 });
 client.close();
});

Mongo - Full example

Compass

